
CUDA Programming Examples for Efficiency

https://drive.google.com/drive/folders/1ls7mCcma4n3hHNvNN9E3aR4QFXDwa458?usp=sharing

Peyton Malveaux

Part 1(a): Compare-and-Exchange Using Global Memory with One Block

In this section, we implemented a CUDA kernel that performs a compare-and-exchange operation on an array using global memory

only. The kernel uses a single block of threads to handle the array. Each thread compares and swaps two elements in the array if they

are out of order.

Design

• Each thread works on adjacent elements (A[2*idx] and A[2*idx+1]) from CPU.

• Threads iterate through the array multiple times to ensure the entire array is sorted.

• __syncthreads() is used to ensure all threads synchronize before the next iteration, as sorting requires ordered access across

threads.

• GPU Global memory is directly accessed by all threads without using shared memory for simplicity.

Test Case Example:

Input Array:

#define N 1024 A[Rand,…Rand]

Output Array (after sorting):

[[X,Y], [X,Y],…] where X < Y

All adjacent elements are sorted.

Results:

The algorithm works but is slower than shared memory implementations due to constant global memory access. Global memory has

higher latency compared to shared memory, which affects performance. This implementation is not the most efficient but is

straightforward and highlights the impact of memory access on GPU performance.

Observations:

• The kernel works best when the number of threads matches half the array size (n/2).

• Larger arrays increased the number of iterations required, impacting performance.

Future Improvement:

Using shared memory (Part 2) will significantly improve performance by reducing the number of global memory accesses.

Testing and Results Section (Placeholder for Experimentation)

Test Cases (One Block):

Array Size 1024 512 Threads

Array Size 1024 1024 Threads

Array Size 8192 1024 Threads Increased Time to global memory access

Array Size 8192 512 Threads Increased Time to global memory access

Part 1(b): Compare-and-Exchange Using Global Memory with Multiple Blocks

Problem Description

In Part 1(b), the task is to extend the implementation from Part 1(a) to use multiple blocks of threads. This allows the program to scale

for larger arrays by dividing the workload across multiple thread blocks. Each thread block will process a portion of the array

independently.

Design

1. Thread Block Responsibility: Each block processes a subarray of size proportional to blockDim.x, which is the number of

threads in a block. Each thread within the block works on a pair of elements in the subarray.

2. Synchronization: Threads in the same block use __syncthreads() to coordinate within the block. Global synchronization across

blocks is not directly possible, so the kernel needs to be launched multiple times to simulate global synchronization.

3. Global Memory: Each thread accesses elements in the array directly from global memory. Shared memory is not used in this

part.

This section extends the implementation from Part 1(a) to use multiple blocks of threads. Each thread block processes a portion of

the array independently, allowing the program to scale for larger arrays. The kernel needs to be launched multiple times to

simulate global synchronization across blocks.

Test Case Example:

Input Array:

#define N 1024 A[Rand,…Rand]

Output Array (after sorting):

[[X,Y], [X,Y],…] where X < Y

All adjacent elements are sorted.

Test Cases (Dynamic Block Size):

Array Size 1024 256 Threads

Array Size 1024 1024 Threads

Array Size 8192 1024 Threads Increased Time to global memory access

Array Size 8192 512 Threads Increased Time to global memory access

Array Size 32768 512 Threads Increased Time to global memory access

The test cases demonstrate that performance is influenced by the number of threads per block and the size of the array. Larger arrays,

such as 8192 and 32768 elements, exhibit increased execution times due to the overhead of global memory access. Using more threads

(e.g., 1024 threads per block) improves parallelism for smaller arrays but may not scale efficiently for larger arrays due to memory

latency.

Part 2: Compare-and-Exchange Using Shared Memory and Multiple Blocks

This part improves performance by using shared memory, which is faster than global memory, for the compare-and-exchange

operation. Each block uses shared memory to process its portion of the array, minimizing the number of global memory accesses.

Synchronization is achieved within each block using __syncthreads().

This section improves performance by leveraging shared memory to minimize global memory accesses during the compare-and-

exchange operation. Each thread block processes its portion of the array using shared memory, reducing latency and enhancing

parallelism.

Design

1. Shared Memory Utilization:

Shared memory is used to temporarily store a portion of the array handled by each thread block:

__shared__ int temp[THREADS_PER_BLOCK * 2];

2. Thread Responsibility:

Threads load their portion of the array into shared memory, perform sorting using compare-and-exchange, and then write

back the sorted data to global memory.

3. Synchronization:

Threads within the block synchronize using __syncthreads().

4. Scalability:

The program scales well for larger arrays by dividing the workload across blocks.

Test Cases (Dynamic Blocks, Shared Memory):

Array Size 1024 512 Threads

Array Size 1024 1024 Threads

Array Size 8192 1024 Threads Decreased Time to global memory access

Array Size 8192 512 Threads Decreased Time to global memory access

Array Size 32768 512 Threads Decreased Time to global memory access

Using shared memory in Part 2 SIGNIFICANTLY reduces global memory access latency, improving performance compared to Part 1(b).

Each thread block processes its portion of the array efficiently, and synchronization within blocks ensures correctness. However, global

synchronization across blocks is still a limiting factor, requiring multiple kernel launches for full array sorting. This implementation

demonstrates the advantages of shared memory in enhancing GPU performance for parallel sorting tasks.

Part 3: Merge-and-Split Using Shared Memory and Multiple Blocks

This part involves extending the sorting algorithm to perform merge-and-split operations on two subarrays of size k or greater in each

iteration leveraging bitonic sorting:

❖ Bitonic Sequence Preparation:

o Subarrays are sorted in ascending and descending order alternatively.

❖ Merge-and-Split:

o Exploits parallel compare-and-swap to split the subarrays into smaller bitonic sequences.

❖ Odd-Even Sorting:

o Ensures that the resulting bitonic sequences are sorted before the next iteration.

The implementation uses shared memory to optimize memory access and scales by dividing the workload among multiple blocks.

Design

1. Bitonic Merge-and-Split:

o Divide the input into subarrays of size k.

o Sort half in ascending order and the other half in descending order.

o Perform parallel compare-and-swap operations to merge and split the subarrays.

2. Shared Memory:

o Shared memory is used to store subarrays for sorting, significantly reducing global memory accesses.

3. Multiple Blocks:

o Each block operates on a portion of the array independently.

4. Synchronization:

o Threads in a block synchronize using __syncthreads().

Test Cases (Dynamic Blocks, Shared Memory, Biton Merge-Split):

Array Size 1024 512 Threads

Array Size 8192 1024 Threads Decreased Time to global memory access and bitonic merge

Array Size 8192 512 Threads Decreased Time to global memory access and bitonic merge

Array Size 32768 512 Threads Decreased Time to global memory access and bitonic merge

Array Size 1,048,586 Threads 2048

The merge-and-split using shared memory and multiple blocks effectively exploits parallelism for sorting large arrays. Performance is

influenced by the subarray size (k) and the number of threads per block. Smaller subarray sizes allow efficient memory usage, while

larger sizes increase latency. Shared memory significantly improves performance compared to global-only methods. As we can see with

these in some instances, we were able to achieve sorting at lightning speeds of 0.000 ms! Even 1 million elements were sorted in

fasionable time.

See Plot on Next Page.

